
G E N E R A L I Z A T I O N  OF THE B I O T  V A R I A T I O N A L  

E Q U A T I O N  IN THE H E A T - C O N D U C T I O N  T H E O R Y  

Yu. A. S a m o i l o v i c h  UDC 536.24.02 

The Blot variational method is extended to the case of finite rate of thermal momentum propa- 
gation. A generalized Lagrange equation is obtained which corresponds to an equation of non- 
stationary heat conduction of hyperbolic type. 

At this time the Biot variational method [1] is used sufficiently extensively for the approximate solution 
of nonstationary heat conduction and convective heat-exchange problems. 

In partictflar, the Biot variational equation is used to describe the nonstationary heat conduction in an 
incompressible material  in the form [1] 

where 

OV -I- ' OD = Q,, (1) 
Oq, Oqi 

is the "temperature potential"; 

V=V (qi, q2 . . . . .  qn) =- -~ . ,  T2dVo 
Vo 

D= !~ ~ l:12dVo 
Vo 

is the "dissipation function"; I:I = OIt/Ot = ~q is the thermal flux density vector; and 

Q~ = - -  I T  ~OH ndSo 
�9 Oq~ 
SQ 

is the so-called "thermal force" which is used to take account of the boundary conditions of the problem. As- 
signing the energy conservation law 

and using the Fourier hypothesis 

OT -- div J~ (2) 
pc 0-7- = 

~ grad T = Jq (3) 

corresponds to the variational equation (1). 

The last relationship is based on the assumption of an infinite rate of thermal momentum propagation. 
In the more general case, the interrelation between the thermal flux density and the temperature gradient is 
expressed by the formula [2, 3] 

~ grad T = Jq -~ t OJ~ (4) , - - ~ ,  

corresponding to a finite rate of thermal momentum propagation VT = (X/pctr)t/2. The equation of nonstation- 
ary heat conduction in an incompressible material  hence becomes 
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OT OaT '/ = div ()~ grad T). (5) 
pc - ~  + # or2 / 

The general ized phenomenological Ve rno t t e -Lykov  relationship (4) has recent ly  at t racted the attention 
of r e sea r che r s  [4-7]. In this  connection, the question a r i ses  as to how the Biot variat ional  equation (1) is 
t ransformed if the more  general  relationship (4) is used in place of the Four ie r  hypothesis (3). To answer 
this  question, we convert  relationship (4) by introducing the field vector I-I: 

I(OH 0~H) 
, --~--- -t- t, ---~- -~ grad T---- O. (6) 

Multiplying both sides of this equation by the var iat ion 6H and integrating over the body volume V0, we 
obtain 

~ 1 ( 0 H  0~lt /6HdV0=0" (7, gradT6HdVo+ ~ - ~  + t, Ot z ] 
Vo Vo 

Integrating the f i r s t  t e rm by parts  and using the Os t rogradsk i i -Gauss  formula,  we find 

--  ~ T6 (div H) dVo + S l_~k_~_[_,r{Oll 02ilOt ~ ]] 6HdV~ = -- ,f Tn6HdSo, (8) 

Vo V, S,, 

where n is the unit vector of the external  normal  to the surface S O bounding the volume V0. 

Upon insert ion of the vector H, the energy conservation equation (2) becomes 

pc (T - -  To) -~ - -  div H. (9) 

Taking (9) into account, we wri te  (8) in the form 

pe ~ T6TdVo -t- 

where it is assumed that pc = const  and 

Let  us assume that the functions T 
such that T = T(qi) , H = H(qi)u 

~_d \ ~ _  § tr ~ _  [.( Oil a2H ) 6HdVo = --  .f Tn6HdSo, (10) 

Vo So 

X = const. 

and H depend on cer ta in  generalized coordinates qi (i = 1, 2 , . . .  ,n) 

6 T = ~  OT 6 6 H = ~  OH 
Oq s qi, ~ 6qv (11) 

i ~ l  i-- ' l  

Let  us introduce the functions v = v(q i) and k = k(qi, ~li) by the formulas 

Pc Tz ' k =  1 ( OH ~ ~- 
v = -2- 2---~ k Ot ] " (12) 

Let us find the part ia l  derivatives of the functions v and k with respect  to the generalized coordinates 
and the generalized veloci t ies  

Ov =PCT OT Ok _ 1 H oH Ok _ 1 I-I 0]-I ~ Ok Ok _ 1 OH 0all 
Oql Oqi ' Oqi 3, Oqi ' Oql )~ Oqi ' dt Oql Oql L Oqi Ol 2 

Using these expressions,  we rewr i te  the variat ional  equation (10) 

dVo + 7dVo} q  = Q 6q, O0 dV ~ ~ tr - -~  c)qi ] Oq~ ] oqi ] 

where we used the notation Qi = ~ I Tn OH dSo. �9 0ql 
So 

If the variat ions of the generalized coordinates (6qi) are  mutually independent, then (13) decomposes into n 
equations of var iat ional  type 

Oq~O--V-V _1_ tr -~d OK - - - - ~  @ OH, - Q i  (i = 1, 2 . . . .  , n), (14) 
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where it is assumed 

v = .I  avo, K = .f  Vo. (15) 
Vo Vo 

Comparing (1) and (14), the deduction can be made that using the Vernot te -Lykov relationship (4) in 
place of the Fourier  hypothesis (3) would resul t  in the appearance of an additional member in the Blot var ia-  
tional equation. Let us note that this additional member agrees in form (see the expression in the square 
brackets in the generalized equation (14)) with the corresponding component of the Lagrange equation in ana- 
lytical mechanics, which takes account of the influence of the kinetic energy of the mechanical system [8]. For 
t r  = 0 and K = D Eq. (14) goes over into the Blot equation (1). 

N O T A T I O N  

T, temperature;  t, th-ne; t r ,  relaxation time; x, y, z, spatial coordinates; p, c, X, coefficients of volume 
density, specific heat, and heat conductivity of the material ;  qi, generalized coordinates; the dot above the 
variables qi and H denotes differentiation with respect  to time; Vo = const, So = const a re  the body volume 
and surface area  bounding this volume, respectively. 
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Formulas are  derived for the resis tance offered to a steady or quasisteady current  by a conduct- 
ing film with straight and H-shaped slits. 

UDC 621.316.8 

One way of changing the resis tance of a conducting film used as a res i s to r  is to cut slits in it. A slit is 
a thin curve along which a conducting layer has been removed, i.e.,  in slits the conductivity ~r = 0. 

The resis tance of a film with a slit can be calculated by using the familiar analogy betweenthe hydrody- 
namics problem of flow past a certain body and the electrostat ics problem [1], and also the analogy between ~ 
the electrostatics problem and the problem of the distribution of a steady or quasisteady current  [2]. 

1. We calculate the change in resistance of a film with a straight slit perpendicular to the lines of flow 
at infinity (Fig. 1). We denote the width of the film by 21 and the length of the slit by 2b. We assume that l >> 
b and that the slit is located in the middle of the film so that the perturbing effect of its ends does not extend 
to the edges of the film. The solution of the corresponding hydrodynamics problem of the flow of a fluid past a 
plate in an infinite medium is given in [1]. For the problem under consideration, we write the conformal map- 
ping function in the form 

u7 ( z )  = - -  iE~ ~ :  (1) 

Translated from Inzhenerno-Fizieheskii Zhurnal, Vol. 36, No. 3, pp. 541-545, March, 1979. Original 
art icle st~bmitted January 24, 1978. 
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